O.P.Code: 16EE205

R16

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year II Semester Supplementary Examinations May/June-2024 **NETWORK ANALYSIS**

(Electronics & Communication Engineering)

Time: 3 Hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

a What is the condition for maximum power transfer to the load?

CO₁ L3 6M

b Find Thevenin's equivalent for the following circuit

CO₁ L3 **6M**

OR

a Define and state the properties of incidence matrix.

CO1 L2 **6M**

L3 b For the network shown below draw the graph and find incidence and tie CO₁ **6M**

set matrices.

UNIT-II

a Explain the phasor relation for R,L,C elements.

CO₁ L3

b A resistor of 50Ω , inductance of 100mH and a capacitance of $100\mu\text{F}$ are

CO₁ L3 **6M**

connected in series across 200V, 50Hz supply. Determine the following

(i) Impedance (ii) current flowing through the circuit (iii) power factor

(iv) voltage across R,L &C (v) power in watts

OR

a Explain the phasor relation for parallel RLC circuit.

CO1

L2 6M ·

b A parallel RLC circuit is supplied with a voltage source of 230 V, 50Hz.

CO₁

L3 **6M**

Determine circuit current and power factor if R=40Ω, L=0.2H and $C=50\mu F$.

6M

UNIT-III

Obtain the expression for resonant frequency, bandwidth and Q-factor CO2 5

12M L3

for Series R-L-C circuit.

OR

6	a	In a parallel resonance circuit (Tank circuit) R=2Ω, L=1mH and	CO2	L3	6M
	a,	C=10µF, Find the Resonant frequency, Dynamic impedance and	11.	LIS	0141
		Bandwidth.			
	b	Obtain the expression for resonant frequency for parallel RL-RC circuit.	CO2	L3	6 N/1
		UNIT-IV	CO2	LS	6M
7	a	Find the Y- parameters for the following circuit.	000		
	-		CO ₂	L3	6M
		\circ \longrightarrow $\stackrel{2\Omega}{W}$ \longrightarrow $\stackrel{3\Omega}{W}$ \longrightarrow $\stackrel{\circ}{W}$			
		ξ 6Ω			
		0——————————————————————————————————————			
	b	Express h parameters in terms of ABCD parameters.		L3	6M
_		OR			
8	a	What are the advantages of state variable analysis.	CO ₂	L3	6M
	b	The transfer function of a system is $G(s)=2/(s+1)(s+2)$. Obtain a state variable representation for the system.	CO2	L3	6M
		UNIT-V			
9	a	What is a filter? Explain about various types of filters.	CO3	Τ.Δ	(3.5
	b	Explain the classification of pass band and stop band in detail.		L2	6 M
			CO ₃	L2	6M
10		What is high City To a to a			
10		What is high pass filter. Explain the general configuration and	CO ₃	L2	12M
		parameters of a contant-K high pass filter.			
		*** END ***			